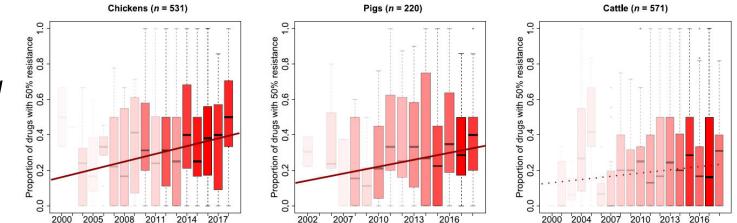
The Role of Microbial Genomics in Feed Quality

Which technologies to improve the delivery and the personalisation of animal nutrition?

23 October 2019

- 1. Livestock production and public health concerns
- 2. Probiotics & EFSA
- 3. Efficacy of probiotics: Microbiome Analysis
- 4. Other alternatives to improve performance: FMT?


1. Livestock production - feed – public health

Feed conversion ratio & Infection resistance VERSUS Feed additives

Antimicrobial (AM) use = AM resistance to common pathogens:

E. coli, Campylobacter spp., nontyphoidal Salmonella spp., and S. aureus

Resistance - Tetracyclines,
 Sulfonamindes, Penicillins

Proportion of antimicrobial compounds with resistance >50% in low-middle income countries

BASECLEAR

New global (EU and USA) stringent regulations to ban antibiotic use for animal husbandry!

Probiotics as additives?

2. Probiotics or Direct Fed Microbials (DFM)

- To balance intestinal microbial balance
- To maintain and improve productivity & growth, prevent enteric pathogens

Bacteria: Latobacillus, Bifidobacterium, Enterococcus, Pedicoccus, Bacillus (spore forming)

Non-bacterial = yeast/Fungi: Aspergillus, Candida pintolopesii, Saccharomyces boulardii & cervisiae

•Multi-species or single-species probiotics

FAO guidelines on probiotics use 2018

Why Probiotics?

Survive low pH & bile acids Adhere to

intestinal epithelium

Produce

Peptide (bacteriocins), metabolites (SCFAs), enzymes (a. amylase)

 \rightarrow Improve colonisation of healthy microbes and mitigate pathogens

→ Efficient digestion, immunity, increased intestinal villi & villi height = nutrient absorption

One size doesn't fit all !

Opportunities & Challenges

Novel microbial strains? Safety? Genetic drifts during fermentation?

3. Safety of strains – QPS listing

- Qualified Presumption of Safety (QPS) listed, no ABR, 2007 by EFSA
- Established sufficient knowledge on the strain:
 - Unequivocal taxonomy
 - WGS \rightarrow linear genome

	Section	Feed additives containing viable microorganisms		Fermentation products	
		Bacteria	Fungi – yeasts	Bacteria	Fungi – yeasts
Identification	2.1	1	1	1	-
Antimicrobial susceptibility	2.2	100		1	
Antimicrobial production	2.3	1	1	1	1
Toxigenicity and pathogenicity	2.4	1	1		
Genetic modification	2.5			For GMMs only	For GMMs only
Absence of the production strain	3.1			100	~
Presence of DNA from the production strain	3.2			Where relevant	Where relevant
Compatibility with other authorised additives	4.2	Where relevant	Where relevant		

BASECLEAR

Table 1: Requirements for scientific information according to the type of feed additive

GMM: genetically modified microorganism.

- Guidance on the characterisation of microorganisms used as feed additives or as production organisms
- Update of the list of QPS-recommended

Challenges with EFSA current guidelines

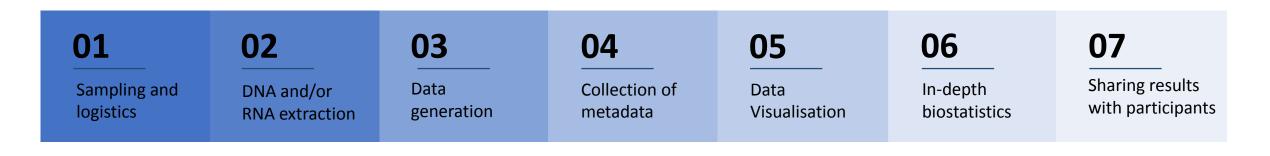
Technical challenges

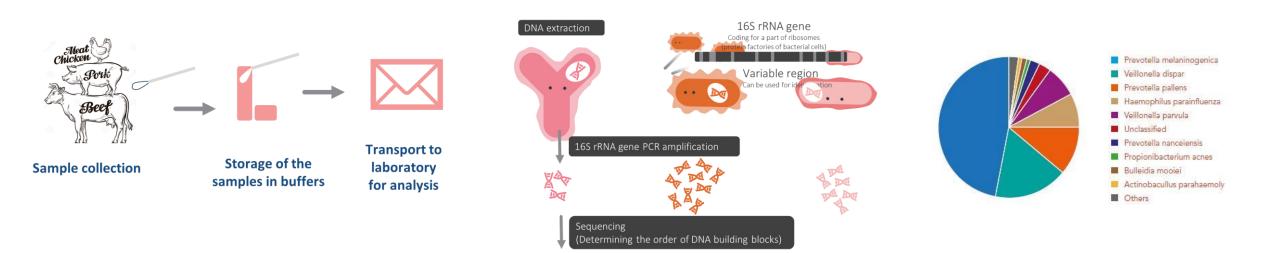
- 1. Taxonomy
- 2. Assessment of GM strains for production purpose?
- 3. @BaseClear ABR = CARD; Virulencetoxins = VFDB

Fungi and yeast?

BaseClear's approach - tailored bioinformatics analysis:

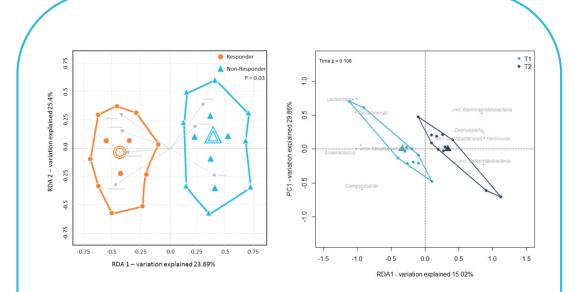
- Biomarker gene
- Toxin & secondary metabolites producing genes
- Copy number analysis
- Targeted search for metabolic pathways involved in toxigenicity
- Conclusive remarks on safety of strain




4. Efficacy of feed additives – Microbiome Analysis

- Microbiome analysis technology Microbial profiling VS Shotgun metagenomics
 - Study design (prebiotics, probiotics, bioactives, enzymes and/or a combo)
 - Conduct the study
 - Results for interpretation

Typical workflow for pre/clinical trials



BASECLEAR

@Proprietary pictures of BaseClear

Microbiome Analysis: points of attention

- Study design is crucial !!
- Involve experts before drawing conclusions

Other technological challenge: shotgun metagenomics

Host vs microbial gDNA

(BaseClear deals with it bioinformatically)

5. Other alternatives to microbial strains?

Faecal microbiota transplantation (FMT) in animals:

- Links between intestinal microbiota, growth, feed efficiency in pigs^a
- Reprogram intestinal microbiota for transfer of host physiological traits like leanness, and gut microbial composition
 - no significant results
 - exploring FMT as AB alternative

^aMcCormack et al (2017) ^bMcCormack et al (2018)

Aim to improve the overall health of an animal and so go beyond antimicrobial use!

